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Coupled map car-following model and its delayed-feedback control

Keiji Konishi,* Hideki Kokame, and Kentaro Hirata
Department of Electrical and Electronic Systems, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Ja

~Received 20 April 1999!

This paper proposes a coupled map car-following traffic model, which describes a dynamical behavior of a
group of road vehicles running in a single lane without overtaking. This model consists of a lead vehicle and
following vehicles, which have a piecewise linear optimal velocity function. When the lead-vehicle speed is
varied, we can observe a traffic jam in the group of the vehicles. We derive a condition under which the traffic
jam never occurs in our model. Furthermore, in order to suppress the traffic jam, for each vehicle we use a
dynamic version of decentralized delayed-feedback control proposed in@Konishi, Hirai, and Kokame, Phys.
Rev. E58, 3055~1998!#, and provide a systematic procedure for designing the controller.
@S1063-651X~99!12410-3#

PACS number~s!: 05.45.2a
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I. INTRODUCTION

The idea of controlling chaos has been widely inves
gated in the field of nonlinear dynamics@1#. Ott, Grebogi,
and Yorke~OGY! gave a method~the OGY method!, which
stabilizes chaotic motions onto a desired unstable perio
orbit ~UPO! within a chaotic attractor@2#. Pyragas proposed
a delayed-feedback control~DFC! method, which does no
require a reference signal corresponding to the desired U
@3#. The DFC method was successfully applied to seve
physical systems@1#, since it is a practical scheme for stab
lizing real chaotic systems. Furthermore, several researc
analyzed the stability of the DFC system@4–7#, and dis-
cussed a discrete-time version@8–13# of the method. Most of
these studies dealt with the stabilization of temporal chao
low-dimensional systems; on the contrary, investigations
spatiotemporal chaotic behavior and its control have
tracted much interest recently@14#. Konishi, Hirai, and
Kokame @15# proposed a decentralized delayed-feedb
control ~DDFC! for a one-way coupled open map lattic
@16,17#. They derived a necessary and sufficient condit
for the decentralized delayed-feedback control system to
stable. The paper@15# gave a simple procedure for designin
the robust local controllers.

In recent years, the traffic flow problems have be
widely investigated in the field of physics@18–32#. In order
to understand the phenomena in traffic flow, several tra
flow models have been proposed: coupled differential eq
tion models@18–25#, coupled map models@26–28#, and cel-
lular automata@29–32#. Bandoet al. proposed a simple car
following model, which is called the optimal velocity~OV!
model @18#. Each vehicle of this model is described by
simple differential equation. The vehicle equation uses
OV function, which provides the optimal velocity dependin
on the headway distance: each driver controls the velo
based on the OV function. The paper@18# showed traffic jam
phenomena under periodic boundary conditions, and der
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a simple stability condition of the OV model. Komatsu an
Sasa studied the traffic jam on the OV model in detail@19#.
The OV model was modified from several view points: del
effect @20–22#, modification to be simple and solvable@23#,
and generalization of the model@24#.

On the other hand, the coupled map~CM! traffic models
were proposed to show several traffic phenomena on c
puter simulations@26–28#. The CM traffic models have con
tinuous state variables, discrete time, and discrete space
though the large scale OV model takes a long time to ana
its behavior due to huge numerical integration, the CM tr
fic models do not take a long time for computer simulati
because of its simple time-development algorithm. The C
traffic models can be divided into two types. One of them
the chaotic CM traffic model@26,27#: each vehicle shows
chaotic behavior, since its OV function is set as a chao
map. Another model is a nonchaotic CM model that is
discrete-time version of the original OV model@28#: each
vehicle does not behave chaotically, since its OV function
similar to that of the original OV model. The paper@28#
investigated effects of noises under open boundary bo
necks on computer simulations; however, no studies h
ever tried to analyze theoretically the traffic jam in the C
model.

Although most of the papers related to the OV and C
models have investigated the mechanism of the traffic
phenomena, to our knowledge, there are no studies on
pression of the phenomena. The suppression must be an
portant subject of urban road traffic flow. The present pa
has two purposes: ~i! we analyze theoretically the traffi
jam phenomena in a simple CM traffic model and~ii ! we
propose a scheme for suppression of the traffic jam. On
basis of the paper@28#, the present paper introduces
coupled map car-following traffic model, which describ
the dynamical behavior of a group of road vehicles runn
in a single lane without overtaking. Our model consists o
lead vehicle and following vehicles which have a piecew
linear optimal velocity function. We derive a simple suffi
cient condition under which the traffic jam never occurs
the vehicle group. Furthermore, in order to suppress the t
fic jam, we utilize a dynamical version of the decentraliz
delayed-feedback control scheme proposed in@15# for each
4000 © 1999 The American Physical Society
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vehicle, and provide a systematic procedure for designing
controller. Some numerical examples are shown to confi
the theoretical results.

This paper is organized as follows. Section II propose
coupled map car-following traffic model and analyzes its s
bility. In Sec. III, the dynamical version of the decentraliz
delayed-feedback control scheme is introduced for supp
sion of the traffic jam in the model, and we give a simp
procedure for designing the controller. Finally, conclusio
are presented in Sec. IV.

II. COUPLED MAP CAR-FOLLOWING MODEL

A. Description of traffic model

Let us consider a coupled map car-following traffic mod
illustrated in Fig. 1~a!. The lead vehicle is described as

x0~n11!5v0T1x0~n!, ~1!

wherex0(n).0 is the position of the leading vehicle at tim
t5nT, v0.0 is its speed, andT.0 is the sampling time.
We assume that the lead vehicle is not influenced by oth
The following vehicles are given as

xi~n11!5v i~n!T1xi~n! ~ i 51;N!, ~2!

wherexi(n).0 is the position of thei th vehicle,v i(n).0 is
the i th vehicle speed, andN is the number of the following
vehicles. The speed of the following vehicles is governed

v i~n11!5a i@Vi
op
„yi~n!…2v i~n!#T1v i~n!. ~3!

FIG. 1. Illustrations of car-following model and piecewise line
optimal velocity function. ~a! Car-following model. ~b! Piece-
wise linear optimal velocity function.
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a i.0 is the sensitivity of thei th vehicle driver. Vi
op
„yi(n)…

is the OV function, which depends only on a headway d
tanceyi(n) between the (i 21)th andi th vehicles:

yi~n!5xi 21~n!2xi~n!. ~4!

For simplicity, this paper adopts the following piecewise li
ear function as the OV function:

Vi
op
„yi~n!…5

v i
max

2 F11H̄satS 2
yi~n!2h i

z i
D G , ~5!

where the saturation function,H̄sat(•) is described as

H̄sat~r!5H 11 if 11,r
r if 21<r<11
21 if r,21.

~6!

v i
max.0 is the maximum speed,h i.0 is the neutral headway

distance, andz i.0 is the parameter. Figure 1~b! sketches the
piecewise linear OV function. We assume that the lead
hicle speedv0 is less than the maximum speed of all th
following vehicles, i.e.,

v0,v i
max ~ i 51,2, . . . ,N!. ~7!

This assumption guarantees an existence of a vehicle gr
If one vehicle of the group does not satisfy this assumpti
this vehicle cannot follow the preceding vehicle. As a res
this vehicle becomes a new lead vehicle of the second gro

To avoid the collisions and backward motions, all t
vehicles adopt the full-braking action:

if yi~n!,yi
min , then xi~n11!5xi~n!

and v i~n11!50. ~8!

This action implies that thei th vehicle stops suddenly whe
the headway distanceyi(n) is less than a minimum distanc
yi

min .

B. Stability analysis

A vehicle behavior depends only on the headway d
tance; hence, our car-following model can be reduced t
simple system. If the preceding vehicle@i.e., (i 21)th ve-
hicle# runs with the lead-vehicle speedv0 , then the dynam-
ics of thei th vehicle can be given as

v i~n11!5a i@Vi
op
„yi~n!…2v i~ t !#T1v i~n!,

yi~n11!5v0T2v i~n!T1yi~n!.
~9!

The steady state of system~9! is

@v i* yi* #T5Fv0

v0

r i
2

z i

2
1h i GT

, ~10!

wherer i5v i
max/zi . It is clear that the necessary and sufficie

condition for the existence of steady state~10! is condition
~7! @see also, Fig. 1~b!#. Let us consider an error system
around steady state~10!:
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Fdv i~n11!

dyi~n11! G5F12a iT a i r iT

2T 1 G Fdv i~n!

dyi~n! G , ~11!

where dv i(n)5v i(n)2v i* and dyi(n)5yi(n)2yi* .
The stability of steady state~10! depends only on system
matrix ~11!. The characteristic polynomial of system~11!
is

Pi~z!5z21aiz1bi , ~12!

where ai5a iT22 and bi512a iT1a i r iT
2. Jury scheme

allows us to derive a necessary and sufficient condition
system~11! to be stable. The condition is summarized as
following lemma.

Lemma 1.Linear system~11! is stable if and only if

0,r i,
1

T
, 0,a i,

4

~22r iT!T
. ~13!

Condition ~13! means that all the roots ofPi(z)50 are
within a unit circle. Lemma 1 implies that thei th vehicle
satisfying condition~13! can run with the lead-vehicle spee
v0 when the preceding vehicle@i.e., (i 21)th vehicle# is run-
ning constantly withv0 .

C. Numerical simulations

We simulate our traffic flow model on the computer. L
us consider a situation where the lead vehicle stops sudd
for a short time:

x0~n!50 for ns<n<ne . ~14!

This short stop can be considered as a kind of external
turbance for our traffic model. The parameters used in
simulations are given in Table I. All parameters were used
paper@28#. For simplicity, we assume that all vehicles ha
the same parameters. From Lemma 1 we can see that
vehicle is stable when the preceding vehicle is running at
same speed of the lead vehicle@i.e., the parameters in Tabl
I satisfy condition~13!#. The initial positions and speeds a
set as

xi~0!5 (
j 5 i 11

N

yj* , yi~0!5yi* , v i~0!5v i* ~15!

for i 50,1,...,N. This initial condition is the steady state o
our model. The model runs without the external disturba

TABLE I. Parameters for numerical simulations.

Parameter Value Unit

h 25.0 m
z 23.3 m
vmax 33.6 m/sec
a 2.0 sec21

T 0.1 sec
ymin 7.02 m
r
e

t
ly

s-
r

n

ach
e

e

for 0<n,1000 ~i.e., 0<nT,100@sec#!. The lead vehicle
suddenly stops for a short time~nsT5100,neT5102@sec#!.
Figure 2~a! shows the space-time plot of the running traf
flow model after nT590@sec#. The horizontal axis
represents a distance between the lead vehicle and a fol
ing vehicle. It can be seen that the stop disturbance pro
gates the backward vehicles. Figure 2~b! is the
temporal velocity of the first, 25th, and 50th vehicles. T
stop-time intervals and the transient time of the vehicles
crease with vehicle numberi. From the above numerica
simulations, we notice that even if the stability condition
Lemma 1 is satisfied, the traffic jam occurs in our mod
This is because the traffic jam would occur by the followi
reason: the transient behavior of each vehicle propag
backward with the increase in its amplitude. In order to d
rive the condition under which the traffic jam never occu
we shall focus on the transfer function of each vehicle.

D. Nonjam condition

When the preceding vehicle@i.e., (i 21)th vehicle# is not
running constantly withv0 , error system~11! around steady
state~10! can be rewritten as

FIG. 2. Numerical simulations for the free-running traffic mo
el. ~a! Space-time plot of the free-running traffic model.~b!
Temporal velocity behavior of three vehicles.
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Fdv i~n11!

dyi~n11! G5F12a iT a i r iT

2T 1 G Fdv i~n!

dyi~n! G1F0
TGdv i 21~n!,

dv i~n!5@1 0#Fdv i~n!

dyi~n! G .
~16!
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The transfer function fromdv i 21(n) to dv i(n) is described
by

Gi~z!5@1 0#Fz211a iT 2a i r iT

T z21 G21F0
TG5 a i r iT

2

Pi~z!
.

~17!

Since the traffic jam would occur by the increase in amp
tude of each-vehicle transient behavior, we have to derive
condition under which the amplitude of the transient beh
ior decreases. This condition can be reduced to

max
uzu51

uGi~z!u<1 ~ i 51,2, . . . ,N!. ~18!

This means thatH` norms of all the vehicles are 1 or les
Theorem 1 shows a simple sufficient condition of Eq.~18!.

Theorem 1.Assuming that all the vehicles satisfy the co
dition of Lemma 1, condition~18! holds if the following
condition is satisfied:

81a iT~a iT28!

a iT
2~a iT26!

<r i<
a i

21a iT
. ~19!

(Proof). See Appendix A.
Figure 3 illustrates the nonjam condition of Theorem 1

a r i-a i plane. Figure 4 shows the space-time plots of o
traffic model with three types of driver sensitivity~a i51.0,
3.0, and 6.0!. Other parameters are the same as Fig. 2. S
the parameters used in Figs. 4~a!–4~c! satisfy condition~13!
of Lemma 1, each vehicle has a stable solution. Figure~a!
shows a terrible traffic jam in the following vehicles. On th
other hand, in Fig. 4~b!, we can see the oscillating behavi
of vehicles, but cannot observe the terrible traffic jam. T
parameters used in Fig. 4~c! satisfy the nonjam condition o
Theorem 1; then the influence of the lead-vehicle stop
creases with the number of the vehicle. From these num

FIG. 3. Nonjam condition on ar i-a i plane.
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cal simulations, we confirm that the traffic jam never occu
when all the vehicles satisfy the condition of Theorem 1. T
next section shall consider how to suppress the traffic jam
the decentralized delayed-feedback control.

III. DELAYED-FEEDBACK CONTROL OF TRAFFIC
MODEL

A. Control system

The second purpose of this paper is to propose a con
scheme for suppression of traffic jam in our model. Let
add a control signal term to system~3!, i.e.,

v i~n11!5a i@Vi
op
„yi~n!…2v i~n!#T1v i~n!1ui~n!.

~20!

We adopt a dynamic version of the decentralized delay
feedback control proposed in@15# as follows:

wi~n11!5ki
awi~n!1ki

b@v i~n!2v i~n21!#,

ui~n!5ki
cwi~n!1ki

d@v i~n!2v i~n21!#,
~21!

whereki
a ,ki

b ,ki
c ,ki

dPR are the feedback gains. The close
loop system consisting of Eqs.~2!, ~4!, ~20!, and~21! has the
same steady state as system~9!. Around steady state~10! the
closed-loop system can be described by

FIG. 4. Numerical simulation of the free-running traffic mod
with three types of driver sensitivity.~a! a i51.0, ~b! a i53.0, and
~c! a i56.0.
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qi~n11!5Aiqi~n!1Bdv i 21~n!,
dv i~n!5Cqi~n!, ~22!

where

qi~n!5@dv i~n! dv i~n21! dyi~n! wi~n!#T,

Ai5F 12a iT1ki
d 2ki

d a i r iT ki
c

1 0 0 0

2T 0 1 0

ki
b 2ki

b 0 ki
a

G , B5F 0
0
T
0
G ,

C5@1 0 0 0#.

The transfer function fromdv i 21(n) to dv i(n) is

Ḡi~z!5C~zI4342Ai!
21B5

Ni~z!

Di~z!
, ~23!

where

Ni~z!5a i r iT
2z~z2ki

a!,

Di~z!5z41~a iT222ki
a2ki

d!z31$a i r iT2a iT~ki
a11!

12~ki
a1ki

d!111ki
aki

d2ki
bki

c%z21$a iki
aT~12r iT!

2ki
a2ki

d12~ki
bki

c2ki
aki

d!%z1ki
aki

d2ki
bki

c .

In order to suppress the traffic jam in our model, we have
design the feedback gainski

a ,ki
b ,ki

c ,ki
d such that

max
uzu51

uḠi~z!u<1 ~ i 51,2, . . . ,N!. ~24!

The following theorem provides a systematic procedure
how to design the feedback gains.

Theorem 2.Assume that all the vehicles satisfy the fo
lowing conditions:

21,
r iT~32a i r iT

2!21

122r iT
,11, ~25!

r i
2T2~122a iT13a i r iT

2!2

~225r iT1a i r i
2T3!2 <1. ~26!

If the feedback gains are set as

ki
a5

a iT~12r iT!21

a iT~122r iT!
, ki

b5
$a iT~12r iT!21%3

a i
2T2~122r iT!2 ,

ki
c51, ki

d5
$a iT~12r iT!21%2

a iT~122r iT!
, ~27!

then condition~24! is satisfied.
(Proof). See Appendix B.

This theorem provides us with the ability to design t
feedback gains to suppress the traffic jam in our model. F
this theorem we can obtain a systematic procedure to de
the gains: ~i! If condition ~25! is satisfied, then go to the
next step; otherwise, go to exist.~ii ! If condition ~26! is
o

n

m
gn

satisfied, then go to the next step; otherwise, go
exist. ~iii ! The feedback gains are set as Eq.~27!, and then
we guarantee condition~24!.

This procedure is required for each vehicle. The feedb
gains for all the vehicles are designed by the above pro
dure; then the traffic jam never occurs in the controlled
hicle group.

B. Numerical simulations

Let us suppress the traffic jam by the dynamic version
the DDFC on computer simulations. All the parameters
set as Table I and the other condition is the same as Fig
Now, we shall design the feedback gains to suppress
traffic jam. We know the vehicle parameters (a i ,v i

max,zi ,T),
but other information~e.g., the lead-vehicle speedv0 , ve-
hicle positionxi(n), other vehicle speed, and so on! is not
required. For~i!, we check that the system parameters sati
condition ~25!. For ~ii !, we confirm that the system param
eters satisfy condition~26!. For ~iii !, the feedback gains ar
designed on the basis of Eq.~27!. Figure 5~a! shows the
space-time plot of the controlled traffic flow model. We ca
not observe the oscillating behavior and the traffic jam p
nomena. All the vehicles are running smoothly without fu

FIG. 5. Numerical simulations for the controlled traffic mo
el. ~a! Space-time plot of the controlled traffic model.~b! Tempo-
ral velocity behavior of three vehicles.
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braking. The temporal velocity of the first, 25th, and 50
vehicles is shown in Fig. 5~b!. We can see that the minimum
speed of the following vehicles decreases with increas
vehicle numberi.

The above traffic model consists of identical vehicle
from a practical point of view, such a situation must be a r
case. Let us introduce ten types of vehicles as shown
Table II. Other parametersz, T, and ymin are the same a
Table I. We consider 100 vehicles consisting of ten differ
types. For each vehicle the type is selected randomly. Fig
6~a! is the space-time plot of the running traffic model wit
out control. The lead vehicle suddenly stops four times.
observe that the stop disturbances propagate backward.
ure 6~b! shows the speed of the first and 100th vehicles.
you see, the 100th vehicle is running with the maximu
speedsv i

max, stopping for a short time, or oscillating. In o
der to suppress such unstable behavior, we use the dynam
version of the decentralized delayed-feedback con
scheme. The feedback gains for each type are designe
the above systematic procedure. The space-time plot of
running traffic model with control is shown in Figure 7~a!.
We cannot observe the traffic jam. Figure 7~b! is the speed of
the first and 100th vehicles. We can see that the 100th

TABLE II. Ten types of vehicles.

Type I II III IV V VI VII VIII IX X

a i 1.8 1.8 1.8 2.0 2.0 2.0 2.0 2.2 2.2 2
v i

max 30 32 34 30 32 33 34 30 32 34
h i 27 25 23 27 25 23 27 25 23 27

FIG. 6. Numerical simulations for the free-running traffic mod
consisting of ten type vehicles. The lead-vehicle stops fornT
5100– 103, 120– 123, 140– 143, and 160– 163.~a! Space-time
plot of the free-running traffic model.~b! Temporal velocity be-
havior of the first and 100th vehicles.
g
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hicle is running smoothly. These numerical simulations sh
that our control scheme would be a useful method for s
pression of a traffic jam.

IV. CONCLUSIONS

This paper proposed the simple CM traffic model descr
ing a dynamical behavior of a group of road vehicles runn
in a single lane without overtaking. We derived the simp
condition under which a traffic jam never occurs in o
model. Furthermore, we utilized a dynamical version of t
decentralized delayed-feedback control scheme to supp
the traffic jam, and provided a systematic procedure to
sign the control system. This control scheme for our tra
model has the following four advantages:~i! The controller
of each vehicle does not require other vehicle informat
~e.g., other vehicle speed, vehicle position, vehicle para
eters, and so on!, ~ii ! Each controller does not need a desir
speed~i.e., the lead vehicle speed!, ~iii ! This control scheme
is useful for any size traffic model, and~iv! There is no need
to change the vehicle parameters. It is obvious that th
advantages are practical for real traffic flows. We show
that numerical simulations agree well with our theoretic
results.

We think that our theoretical results would be useful f
other load situations: periodic boundary conditions, op
boundary bottlenecks, two lanes with overtaking, and so
It is highly desired to investigate the above situations fro
practical viewpoints.
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FIG. 7. Numerical simulations for the controlled traffic mod
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APPENDIX A: PROOF OF THEOREM 1

The absolute value of the transfer functionGi(z) can be
described as

uGi~z!u uzu515Aa i
2r i

2T4

gi~u!
~A1!

for all uP@0,2p#. The functiongi(u) is

gi~u!54bi cosu212ai~11bi !cosu1~12bi !
21ai

2.

Condition ~18! can be reduced to

gi~u!>a i
2r i

2T4 ;uP@0,2p# ~ i 51,2, . . . ,N!. ~A2!

In this proof, we shall derive a simple sufficient condition
Eq. ~A2!. It is obvious that if the following three conditions

~a! gi~0!>a i
2r i

2T4,

~b!
]gi~u!

]u
>0 ;uP@0,p#,

~c!
]gi~u!

]u
<0 ;uP@p,2p#,

are satisfied, then condition~A2! holds.
~a! It is easy to confirm thatgi(0)5a i

2r i
2T4 for any pa-

rameters. Hence, we do not have to consider condition~a!.
~b! We have

]gi~u!

]u
522 sinu$ai~11bi !14bi cosu%>0 ;uP@0,p#.

~A3!

Since 22 sinu<0 for all uP@0,p#, we should consider
ai(11bi)14bi cosu<0 for all uP@0,p#. As ucosuu<1,
condition ~A3! can be described as

~ i! ai~11bi !14bi<0 if bi.0,

~ ii ! ai~11bi !24bi<0 if bi,0,

~ iii ! ai<0 if bi50.
pl.
It is clear that above conditions~i!–~iii ! are equal to condi-
tion ~19!.

~c! In a similar manner, we can obtain the same condit
as Eq.~19!.

APPENDIX B: PROOF OF THEOREM 2

Substituting gains~27! into transfer function~23!, we
have

Ḡi~z!5

a i r iT
2zS z2

a iT~12r iT!21

a iT~122r iT! D
z3S z1

r iT~32a i r iT
2!21

122r iT
D . ~B1!

Assumption~25! implies that the transfer functionḠi(z) has
no poles outside of unit circle~i.e., stable!. It is obvious that
if the conditions

~a! uG~1!u<1,

~b! uG~ej p!u<1,

~c!
]uG~ej u!u

]u
Þ0 ;uP~0,p!,

~d!
]uG~ej u!u

]u
Þ0 ;uP~p,2p!,

are satisfied, then condition~24! holds. ~a! It is easy to
confirm thatuG(1)u51 for any parameters.~b! Condition
~b! can be reduced to

uG~ej p!u

5AG~ej p!G~e2 j p!

5Ar i
2T2~122a iT13a i r iT

2!2/~225r iT1a i r i
2T3!2<1.

~B2!

We see that condition~b! is always satisfied under assum
tion ~26!. ~c! Substitutingej u5cosu1j sinu into condition
~c!, we can prove that condition~c! always holds. ~d! In a
similar manner, we can prove that condition~d! always
holds.
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