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Coupled map car-following model and its delayed-feedback control

Keiji Konishi,* Hideki Kokame, and Kentaro Hirata
Department of Electrical and Electronic Systems, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
(Received 20 April 1999

This paper proposes a coupled map car-following traffic model, which describes a dynamical behavior of a
group of road vehicles running in a single lane without overtaking. This model consists of a lead vehicle and
following vehicles, which have a piecewise linear optimal velocity function. When the lead-vehicle speed is
varied, we can observe a traffic jam in the group of the vehicles. We derive a condition under which the traffic
jam never occurs in our model. Furthermore, in order to suppress the traffic jam, for each vehicle we use a
dynamic version of decentralized delayed-feedback control proposgtbirishi, Hirai, and Kokame, Phys.

Rev. E58, 3055(1998], and provide a systematic procedure for designing the controller.
[S1063-651X99)12410-3

PACS numbd(s): 05.45-a

[. INTRODUCTION a simple stability condition of the OV model. Komatsu and
Sasa studied the traffic jam on the OV model in detad].

The idea of controlling chaos has been widely investi-The OV model was modified from several view points: delay
gated in the field of nonlinear dynami¢&]. Ott, Grebogi, effect[20—22, modification to be simple and solvatl23],
and Yorke(OGY) gave a methodthe OGY methog which  and generalization of the modg4].
stabilizes chaotic motions onto a desired unstable periodic On the other hand, the coupled ma@pM) traffic models
orbit (UPO) within a chaotic attractof2]. Pyragas proposed were proposed to show several traffic phenomena on com-
a delayed-feedback contrdDFC) method, which does not puter simulation$26—2§. The CM traffic models have con-
require a reference signal corresponding to the desired UP€huous state variables, discrete time, and discrete space. Al-
[3]. The DFC method was successfully applied to severathough the large scale OV model takes a long time to analyze
physical systemfl], since it is a practical scheme for stabi- its behavior due to huge numerical integration, the CM traf-
lizing real chaotic systems. Furthermore, several researchefie models do not take a long time for computer simulation
analyzed the stability of the DFC systefd—7], and dis- because of its simple time-development algorithm. The CM
cussed a discrete-time versi8+13] of the method. Most of  traffic models can be divided into two types. One of them is
these studies dealt with the stabilization of temporal chaos ithe chaotic CM traffic mode]26,27): each vehicle shows
low-dimensional systems; on the contrary, investigations othaotic behavior, since its OV function is set as a chaotic
spatiotemporal chaotic behavior and its control have atmap. Another model is a nonchaotic CM model that is a
tracted much interest recentlyl4]. Konishi, Hirai, and discrete-time version of the original OV modgl8]: each
Kokame [15] proposed a decentralized delayed-feedbackehicle does not behave chaotically, since its OV function is
control (DDFC) for a one-way coupled open map lattice similar to that of the original OV model. The papg28]
[16,17. They derived a necessary and sufficient conditioninvestigated effects of noises under open boundary bottle-
for the decentralized delayed-feedback control system to beecks on computer simulations; however, no studies have
stable. The papdi5] gave a simple procedure for designing ever tried to analyze theoretically the traffic jam in the CM
the robust local controllers. model.

In recent years, the traffic flow problems have been Although most of the papers related to the OV and CM
widely investigated in the field of physi¢48—32. In order models have investigated the mechanism of the traffic jam
to understand the phenomena in traffic flow, several traffigpghenomena, to our knowledge, there are no studies on sup-
flow models have been proposed: coupled differential equapression of the phenomena. The suppression must be an im-
tion models18—25, coupled map mode[26-28, and cel-  portant subject of urban road traffic flow. The present paper
lular automatd29—32. Bandoet al. proposed a simple car- has two purposes:(i) we analyze theoretically the traffic
following model, which is called the optimal velocitYoV)  jam phenomena in a simple CM traffic model aid we
model [18]. Each vehicle of this model is described by a propose a scheme for suppression of the traffic jam. On the
simple differential equation. The vehicle equation uses théasis of the papef28], the present paper introduces a
OV function, which provides the optimal velocity depending coupled map car-following traffic model, which describes
on the headway distance: each driver controls the velocityhe dynamical behavior of a group of road vehicles running
based on the OV function. The pagéB] showed traffic jam in a single lane without overtaking. Our model consists of a
phenomena under periodic boundary conditions, and deriveldad vehicle and following vehicles which have a piecewise

linear optimal velocity function. We derive a simple suffi-
cient condition under which the traffic jam never occurs in

* Author to whom correspondence should be addressed. the vehicle group. Furthermore, in order to suppress the traf-
FAX: +81-722-54-9907. Electronic address: fic jam, we utilize a dynamical version of the decentralized
konishi@ecs.ees.osakafu-u.ac.jp delayed-feedback control scheme proposefilB] for each
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oy oy, oy () a;>0 is the sensitivity of théth vehicle driver. VP(y;(n))
‘ is the OV function, which depends only on a headway dis-

V—N(ET," @@vz—(n’) v—l-(llz-v—0> tancey;(n) between thei(—1)th andith vehicles:

Nth fvehicle ’ 2nd \jehicle 1st jvehicle lead }vehicla ( ) ( ) ( ) (4)
L 1 1 [ [ > . n :X._ n —X n .
) e PN Y=l
(@) Location of vehicles For simplicity, this paper adopts the following piecewise lin-
ear function as the OV function:
; v = [y -,
Vi (3, (m) VP(yi(n))= '2 1+ Hsa<2 ' 2 ') , 6)
I
Lead vehicle speed where the saturation functiobl.,(-) is described as
§ B +1 i +1<p
: Hefp)=1p if —1lsps=+1 (6)
-1 if p<-—-1.
. | v{"™>0 is the maximum speedy; >0 is the neutral headway
1 0 e L ¥, (0)-n; distance, and;>0 is the parameter. Figurél) sketches the
(b) 2 & ? i piecewise linear OV function. We assume that the lead ve-

hicle speedv, is less than the maximum speed of all the
FIG. 1. lllustrations of car-following model and piecewise linear following vehicles, i.e.,
optimal velocity function. (a) Car-following model. (b) Piece-
wise linear optimal velocity function. vo<vi™ (i=1,2,...N). (7)

This assumption guarantees an existence of a vehicle group.
If one vehicle of the group does not satisfy this assumption,
vehicle, and provide a systematic procedure for designing ththis vehicle cannot follow the preceding vehicle. As a result,
controller. Some numerical examples are shown to confirnthis vehicle becomes a new lead vehicle of the second group.
the theoretical results. To avoid the collisions and backward motions, all the
This paper is organized as follows. Section Il proposes aehicles adopt the full-braking action:
coupled map car-following traffic model and analyzes its sta- _
bility. In Sec. IIl, the dynamical version of the decentralized if yi(m)<yi™, then xi(n+1)=x(n)
delayed-feedback control scheme is introduced for suppres-
sion of the traffic jam in the model, and we give a simple and vi(n+1)=0. (8)

procedure for designing the controller. Finally, conclusions o ) )
are presented in Sec. IV. This action implies that théth vehicle stops suddenly when

the headway distancg(n) is less than a minimum distance
y_min
I
II. COUPLED MAP CAR-FOLLOWING MODEL
A. Description of traffic model B. Stability analysis

Let us consider a coupled map car-following traffic model A vehicle behavior depends only on the headway dis-
illustrated in Fig. 1a). The lead vehicle is described as tance; hence, our car-following model can be reduced to a
simple system. If the preceding vehidlee., (i—1)th ve-
Xo(N+1)=voT+Xo(n), (D) hicle] runs with the lead-vehicle speeg, then the dynam-
ics of theith vehicle can be given as
wherexy(n)>0 is the position of the leading vehicle at time

t=nT, vo>0 is its speed, and@>0 is the sampling time. vi(n+1)=a;[VP(y;i(n)—vi()]T+vi(n), ©
We assume that the lead vehicle is not influenced by others. yi(n+1)=voT—v;(nN)T+y;(n).
The following vehicles are given as
The steady state of syste(®) is
Xi(n+1)=v;(nN)T+x;(n) (i=1~N), (2 T
* yx1T— Vo {i
[vi yil'= Vo= 5 T (10
I

wherex;(n)>0 is the position of théth vehicle,v;(n)>0 is
theith vehicle speed, anN is the number of the following

; , : . herer;=v{"®/¢; . It is clear that the necessary and sufficient
vehicles. The speed of the following vehicles is governed bytl:vondition for the existence of steady std1®) is condition

o (7) [see also, Fig. (b)]. Let us consider an error system
vi(n+1)=a;[VP(yi(n))—vi(n)]T+vi(n). (3 around steady statd.0):
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TABLE |I. Parameters for numerical simulations. 200 Lead vehicle stops for nT=100~102 [sec]
Parameter Value Unit
7 25.0 m
14 23.3 m g
ymax 33.6 m/sec = /

> K
a 2.0 sec! < ///////
T 0.1 sec /////
ymin 7.02 m
100 rrrrrrrrrrrr1f0rorgrrrrrrfrrrrrfrrrrrrrrrrfrmrmr |

ovi(n+1)| 1=aT airiT|[8vi(n) " (a) Xo(M=xi(n) [m]
syin+1|7| -1 1 Jleym) Y
where  dvi(n)=vi(n)—vi{ and d&y;(n)=y;(n)—y; . = Lead vehicle stops for 100-102 [sec]
The stability of steady stat€l0) depends only on system 40} -~ :v4(n)
matrix (11). The characteristic polynomial of syste(tl) - Vas(n)

IS

Pi(z)=2’+az+b;, (12

where aj=a;T—2 andb;=1—a; T+ a;r;T2. Jury scheme
allows us to derive a necessary and sufficient condition for

vi(n) [m/sec]
N
o
|
S
<
3
e
N
E——
———]
— ——¢’>
TN
e __l
. _ 1=y
o

system(11) to be stable. The condition is summarized as the ot . yov _
following lemma. .
Lemma lLlinear systen(11) is stable if and only if 100 200
(b) nT [sec]
1
0<ri<f' 0< ai<(2_ T 13 FIG. 2. Numerical simulations for the free-running traffic mod-

el. (a) Space-time plot of the free-running traffic modelb)
Condition (13) means that all the roots d?;(z)=0 are  Temporal velocity behavior of three vehicles.
within a unit circle. Lemma 1 implies that thieh vehicle
satisfying condition13) can run with the lead-vehicle speed
v when the preceding vehiclee., (i —1)th vehicld is run-
ning constantly withv,. for 0<n<1000 (i.e., 0<nT<100[sed). The lead vehicle

suddenly stops for a short timasT=100,n,T=102[ seq).
_ _ _ Figure Za) shows the space-time plot of the running traffic
C. Numerical simulations flow model after nT=90[sed. The horizontal axis
We simulate our traffic flow model on the computer. Let represents a distance between the lead vehicle and a follow-
us consider a situation where the lead vehicle stops suddeniyg vehicle. It can be seen that the stop disturbance propa-
for a short time: gates the backward vehicles. Figure(b2 is the
temporal velocity of the first, 25th, and 50th vehicles. The
stop-time intervals and the transient time of the vehicles in-

This short stop can be considered as a kind of external di€réase with vehicle number From the above numerical
turbance for our traffic model. The parameters used in c,uﬁlmulanons., we notice that even |_f the stab|llt)_/ condition of
simulations are given in Table I. All parameters were used if-emma 1 is satisfied, the traffic jam occurs in our model.
paper[28]. For simplicity, we assume that all vehicles have This is because the traffic jam would occur by the following
the same parameters. From Lemma 1 we can see that eat@fson: the transient behavior of each vehicle propagates
vehicle is stable when the preceding vehicle is running at th@ackward with the increase in its amplitude. In order to de-
same speed of the lead vehigle., the parameters in Table rive the condition under which the traffic jam never occurs,

| satisfy condition(13)]. The initial positions and speeds are we shall focus on the transfer function of each vehicle.

set as

Xo(n)=0 for ng<n<n,. (149

N
Xi(0)= 2+1 yi, yi0)=yi, vi(0)=v{ (195 D. Nonjam condition
j=i
When the preceding vehic[ge., (i—1)th vehiclg is not
fori=0,1,...N. This initial condition is the steady state of running constantly wittvy, error systen{11) around steady
our model. The model runs without the external disturbancetate(10) can be rewritten as
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5vi(n+1)}_ 1= T ar
syin+1)] | -T 1

svim=[1 o it

i(n)*[ ] 5yi(n) .

The transfer function frondv;_4(n) to év;(n) is described
by
z—1+aT 1{
T

_GfiriT
z—1

0
T

CliI'iTz

Pi(2) -
17

Gi(2=[1 0]

Since the traffic jam would occur by the increase in ampli-
tude of each-vehicle transient behavior, we have to derive the
condition under which the amplitude of the transient behav-

ior decreases. This condition can be reduced to

maxGi(z)|<1 (i=1,2,...N).

lz=1

(18)

This means thaH., norms of all the vehicles are 1 or less.
Theorem 1 shows a simple sufficient condition of Eg).

Theorem 1Assuming that all the vehicles satisfy the con-
dition of Lemma 1, condition(18) holds if the following
condition is satisfied:

8+ aiT(aiT—S)
a;T?(a;T—6)

a;j

<r<

: 2+ aiT' (19)

(Proof). See Appendix A.

COUPLED MAP CAR-FOLLOWING MODEL AND ITS . ..

iT

4003

évi(n) 0
syi(n) oVi_1(n),

T

(16)

cal simulations, we confirm that the traffic jam never occurs
when all the vehicles satisfy the condition of Theorem 1. The
next section shall consider how to suppress the traffic jam by
the decentralized delayed-feedback control.

Ill. DELAYED-FEEDBACK CONTROL OF TRAFFIC
MODEL

A. Control system

The second purpose of this paper is to propose a control
scheme for suppression of traffic jam in our model. Let us
add a control signal term to syste(®), i.e.,

vi(n+1)=a;[VP(y;(n))—v;(n)]T+v;(n) +u(n).
(20)

We adopt a dynamic version of the decentralized delayed-
feedback control proposed ji5] as follows:

wi(n+1)=kw;(n) +k[vi(n)—vi(n—1)],
u () =kow,(m + kv (m—v,(n-1)], @Y

wherek? kP k¢ kieR are the feedback gains. The closed-
loop system consisting of Eq&), (4), (20), and(21) has the

same steady state as systén Around steady stat€l0) the

Figure 3 illustrates the nonjam condition of Theorem 1 onclosed-loop system can be described by
ar;-a; plane. Figure 4 shows the space-time plots of our

traffic model with three types of driver sensitivitw;= 1.0,

3.0, and 6.D Other parameters are the same as Fig. 2. Since

the parameters used in Figga#-4(c) satisfy condition(13)

of Lemma 1, each vehicle has a stable solution. Figuae 4

shows a terrible traffic jam in the following vehicles. On the
other hand, in Fig. &), we can see the oscillating behavior

of vehicles, but cannot observe the terrible traffic jam. The

parameters used in Fig(e} satisfy the nonjam condition of

Theorem 1; then the influence of the lead-vehicle stop de-
creases with the number of the vehicle. From these numeri-

_ 8+aiT(aiT-8)
O T T o T-6)

FIG. 3. Nonjam condition on g&-«; plane.

200 Lead vehicle stops for nT=100-102 [sec]

(@)

nT {sec]

100
200
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nT [sec]
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o

FIG. 4. Numerical simulation of the free-running traffic model
with three types of driver sensitivity.(a) «;=1.0,(b) «;=3.0, and
(@] «;=6.0.
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g(n+1)=Aqg(n)+Bdv;_1(n), 22 200 Lead vehicle stops for nT=100 — 102 [sec]
ovi(n)=Cq(n), i
where
a(m=[ovi(n) dvi(n=1) syi(m) w(n]", g
l—aiT-i-k? _k:j airiT klc 0 'E
A 1 0 0 0 5 0
T o 1 o " |Tp 100 DI
kP K 0 Kk 0 fl AR
1000 0
C:[l O 0 0] (a) XO(nT)_Xi(nT) [m]
The transfer function frondv;_,(n) to dv;(n) is
N ( ) r— Lead vehicle stops for nT=100 — 102 [sec]
_ i(z —_—
_ ANl i\ '
Gi(2)=Clzlaxa=A)'B=5 . (23 sl v
Vos(nT)
where 7 ——— e 1 Vg(nT)
Ni(2)=a;r T?z(z—kf), i 20— -
Dy(2) =2+ (a;T— 2— k3~ K) 28+ {a;r T— e T(KA+ 1) 3 \\j
+ 20K+ k%) + 1+ K3k — KPKC} 22+ { 3T (1 —1,T)
op
—k@—k9+2(kPk— k?k%)} z+ kK — kPKE . .
100 150 200
In order to suppress the traffic jam in our model, we have to ®) nT [sec]

design the feedback gaiké kP k¢ k% such that
FIG. 5. Numerical simulations for the controlled traffic mod-

ma)dai(z)|$l (i=1,2,...N). (24 el. (a) Space-time plot of the controlled traffic modé) Tempo-
lzl=1 ral velocity behavior of three vehicles.
The following theorem provides a systematic procedure on )
how to design the feedback gains. satisfied, then go to the next step; otherwise, go to
Theorem 2Assume that all the vehicles satisfy the fol- €xist. (iii) The feedback gains are set as E2j), and then
lowing conditions: we guarantee conditio(®4).
This procedure is required for each vehicle. The feedback
1<riT(3_a'iriT2)_l ‘1 o5 gains for all the vehicles are designed by the above proce-
N 1-2r,T ! (25) dure; then the traffic jam never occurs in the controlled ve-
hicle group.
reT2(1—-2a;T+3a;r;T?)? ) 26
=
—5r. 2732 T
(2=5rT+ariT) B. Numerical simulations
If the feedback gains are set as . ) .
Let us suppress the traffic jam by the dynamic version of
L aT(1-rT)—1 ) {a;T(1—r;T)—1}3 the DDFC on computer simulations. All the parameters are
i~ aT(1—-2rT) @ 1 = a?T2(1-2rT)2 set as Table | and t_he other condition is_the same as Fig. 2.
Now, we shall design the feedback gains to suppress the
(@, T(1—rT)—1)2 traffic jam. We know the vehicle parametes; (v{"®,¢;,T),
ke=1, ki= : (27)  but other information(e.g., the lead-vehicle speeg, ve-
a;T(1-2r;T) . " . )
! : hicle positionx;(n), other vehicle speed, and so)ds not
then condition(24) is satisfied. required. Fol(i), we check that the system parameters satisfy
(Proof). See Appendix B. condition (25). For (ii), we confirm that the system param-

This theorem provides us with the ability to design theeters satisfy conditiori26). For (iii), the feedback gains are
feedback gains to suppress the traffic jam in our model. Frordesigned on the basis of E(7). Figure %a) shows the
this theorem we can obtain a systematic procedure to desiggpace-time plot of the controlled traffic flow model. We can-
the gains: (i) If condition (25) is satisfied, then go to the not observe the oscillating behavior and the traffic jam phe-
next step; otherwise, go to exist(ii) If condition (26) is nomena. All the vehicles are running smoothly without full
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TABLE Il. Ten types of vehicles.

Type | i m v v v vl vl IX X

a; 1.8 18 18 20 20 20 20 22 22 22
v 30 32 34 30 32 33 34 30 32 34
i 27 25 23 27 25 23 27 25 23 27

braking. The temporal velocity of the first, 25th, and 50th
vehicles is shown in Fig.(6). We can see that the minimum
speed of the following vehicles decreases with increasing
vehicle numbei.

The above traffic model consists of identical vehicles:
from a practical point of view, such a situation must be a rare
case. Let us introduce ten types of vehicles as shown in
Table Il. Other parameterg, T, andy™" are the same as
Table 1. We consider 100 vehicles consisting of ten different
types. For each vehicle the type is selected randomly. Figure
6(a) is the space-time plot of the running traffic model with-
out control. The lead vehicle suddenly stops four times. We
observe that the stop disturbances propagate backward. Fig-
ure Gb) shows the speed of the first and 100th vehicles. As
you see, the 100th vehicle is running with the maximum

300

T
3000 2000 1000 0

Xo(NT)=x(nT) [m]

vi(n) [m/sec]

(b)

00 200 300
nT [sec]

speeds/"™, stopping for a short time, or oscillating. In or-

FIG. 7. Numerical simulations for the controlled traffic model

der to suppress such unstable behavior, we use the dynamiG@hsisting of ten type vehicles. The stop of the lead vehicle is the
version of the decentralized delayed-feedback controkame as Fig. 6. (a) Space-time plot of the controlled traffic mod-
scheme. The feedback gains for each type are designed Ry, (b) Temporal velocity behavior of the first and 100th vehicles.
the above systematic procedure. The space-time plot of the

running traffic model with control is shown in Figuréay.
We cannot observe the traffic jam. Figurd)7is the speed of

hicle is running smoothly. These numerical simulations show
that our control scheme would be a useful method for sup-

the first and 100th vehicles. We can see that the 100th vd2ression of a traffic jam.

300

Hlﬂlﬂ]”] ”
/l%%"
2. 200t //)))))j/ﬁ)w
c S %{%ﬁ”’"""
s Bl
100

3000 2000 1000
Xo(nT)=x(nT) [m]

100 200 300
(b) nT [sec]

FIG. 6. Numerical simulations for the free-running traffic model
consisting of ten type vehicles. The lead-vehicle stops rfar
=100-103, 120-123, 140-143, and 160-16@) Space-time
plot of the free-running traffic model.(b) Temporal velocity be-
havior of the first and 100th vehicles.

IV. CONCLUSIONS

This paper proposed the simple CM traffic model describ-
ing a dynamical behavior of a group of road vehicles running
in a single lane without overtaking. We derived the simple
condition under which a traffic jam never occurs in our
model. Furthermore, we utilized a dynamical version of the
decentralized delayed-feedback control scheme to suppress
the traffic jam, and provided a systematic procedure to de-
sign the control system. This control scheme for our traffic
model has the following four advantagesii) The controller
of each vehicle does not require other vehicle information
(e.g., other vehicle speed, vehicle position, vehicle param-
eters, and so gn(ii) Each controller does not need a desired
speed(i.e., the lead vehicle spegdiii) This control scheme
is useful for any size traffic model, arity) There is no need
to change the vehicle parameters. It is obvious that these
advantages are practical for real traffic flows. We showed
that numerical simulations agree well with our theoretical
results.

We think that our theoretical results would be useful for
other load situations: periodic boundary conditions, open
boundary bottlenecks, two lanes with overtaking, and so on.
It is highly desired to investigate the above situations from
practical viewpoints.
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APPENDIX A: PROOF OF THEOREM 1 It is clear that above condition)—(iii) are equal to condi-
. tion (19).
The absolute value of the transfer functiGn(z) can be () In a similar manner, we can obtain the same condition
described as
as Eq.(19).
.2r.2T4
e APPENDIX B: PROOF OF THEOREM 2
1Gi(2)]|=1= 9.0 (A1)
: Substituting gains(27) into transfer function(23), we
for all #<[0,27]. The functiong;(6) is have
gi(0)=4b; cos#?+ 2a;(1+b;)cosh+ (1—b;)%+a’. ar T2zl 7— aT(1-rT)—1
— m aiT(l—ZriT)
Condition (18) can be reduced to Gi(z)= ( riT(3—airiT2)—1> : (B1)
3
z
gi(0)=a?r?T* Vee[0,2r] (i=1,2,...N). (A2 1-2nT

In this proof, we shall derive a simple sufficient condition of Assumption(25) implies that the transfer functioB(z) has

Eq. (A2). It is obvious that if the following three conditions, NO poles outside of unit circlg.e., stablg. It is obvious that
if the conditions

(@ gi(0)=afriT?

(@ |G(1)|=1,
(b) ag;ff)zo Voe[0,7], (b) |G(e™)|=1,
|G(el’)|
99;(0) (© ——p—#0 Voe(0m),
(c) 70 <0 Voe[m2m],
d|G(el’)]
are satisfied, then conditiq@2) holds. (d) —g 70 Ve (r,2m),

(a) It is easy to confirm thag;(0)= a?rT* for any pa-

rameters. Hence, we do not have to consider condigpn  are satisfied, then conditio24) holds. (a) It is easy to

(b) We have confirm that|G(1)|=1 for any parameters.(b) Condition
(b) can be reduced to
00:( 0 .
gaLe)z—Z sin6{a;(1+b;)+4b;cosf}=0 VHe[0,7]. |G(e'™)]|

(A3) — G(eJﬂ')G(e*]w)

Since —2sin#<0 for all #<[0,7], we should consider o5 ———— AT — 7032
a;(1+b;)+4b; cos#<0 for all #c[0,7]. As |cosf|<1, = VT 20 T+ 3y T (2-5r T+ aqr T <1,

condition (A3) can be described as (B2)
(i) aj(1+b;)+4b;<0 if b;>0, We see that conditiofb) is always satisfied under assump-
tion (26). (c) Substitutinge! = cosé+ | sin # into condition
(i) aj(1+b;)—4b;<0 if b;<0, (c), we can prove that conditioft) always holds. (d) In a
similar manner, we can prove that conditigd) always
(i) a=<0 if by=0. holds.
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